Wykaz publikacji naukowych:

 Zastosowania treningu wysokościowego w sporcie drużynowym: 

  • Beard A, Ashby J, Kilgallon M, Brocherie F, Millet GP. Upper-body repeated-sprint training in hypoxia in international rugby union players. Eur J Sport Sci. 2019 Oct;19(9):1175-1183. doi: 10.1080/17461391.2019.1587521. Epub 2019 Mar 17. PMID: 30880627.
  • Brocherie F, Millet GP, Hauser A, Steiner T, Rysman J, Wehrlin JP, Girard O. “Live High-Train Low and High” Hypoxic Training Improves Team-Sport Performance. Med Sci Sports Exerc. 2015 Oct;47(10):2140-9. doi: 10.1249/MSS.0000000000000630. PMID: 25668402.
  • Chycki J, Czuba M, Gołaś A, Zając A, Fidos-Czuba O, Młynarz A, Smółka W. Neuroendocrine Responses and Body Composition Changes Following Resistance Training Under Normobaric Hypoxia. J Hum Kinet. 2016 Oct 14;53:91-98. doi: 10.1515/hukin-2016-0013. PMID: 28149414; PMCID: PMC5260579.
  • Czuba M, Wilk R, Karpiński J, Chalimoniuk M, Zajac A, Langfort J. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle. PLoS One. 2017 Aug 1;12(8):e0180380. doi: 10.1371/journal.pone.0180380. PMID: 28763443; PMCID: PMC5538675.
  • Czuba M, Zając A, Maszczyk A, Roczniok R, Poprzęcki S, Garbaciak W, Zając T. The effects of high intensity interval training in normobaric hypoxia on aerobic capacity in basketball players. J Hum Kinet. 2013 Dec 31;39:103-14. doi: 10.2478/hukin-2013-0073. PMID: 24511346; PMCID: PMC3916912.
  • Fornasier-Santos C, Millet GP, Woorons X. Repeated-sprint training in hypoxia induced by voluntary hypoventilation improves running repeated-sprint ability in rugby players. Eur J Sport Sci. 2018 May;18(4):504-512. doi: 10.1080/17461391.2018.1431312. Epub 2018 Feb 5. PMID: 29400616.
  • Girard O, Millet GP, Morin JB, Brocherie F. Does “Live High-Train Low (and High)” Hypoxic Training Alter Running Mechanics In Elite Team-sport Players? J Sports Sci Med. 2017 Aug 8;16(3):328-332. PMID: 28912649; PMCID: PMC5592283.
  • Girard O, Brocherie F, Millet GP. Effects of Altitude/Hypoxia on Single- and Multiple-Sprint Performance: A Comprehensive Review. Sports Med. 2017 Oct;47(10):1931-1949. doi: 10.1007/s40279-017-0733-z. PMID: 28451905.
  • Goods P SR, Dawson BT, Landers GJ, Gore CJ, Peeling P. Effect of different simulated altitudes on repeat-sprint performance in team-sport athletes. Int J Sports Physiol Perform. 2014 Sep;9(5):857-62. doi: 10.1123/ijspp.2013-0423. Epub 2014 Feb 7. PMID: 24509626.
  • Hamlin MJ, Olsen PD, Marshall HC, Lizamore CA, Elliot CA. Hypoxic Repeat Sprint Training Improves Rugby Player’s Repeated Sprint but Not Endurance Performance. Front Physiol. 2017 Feb 7;8:24. doi: 10.3389/fphys.2017.00024. PMID: 28223938; PMCID: PMC5293814.
  • James C, Girard O. In-Season Repeated-Sprint Training in Hypoxia in International Field Hockey Players. Front Sports Act Living. 2020 Jul 8;2:66. doi: 10.3389/fspor.2020.00066. PMID: 33345057; PMCID: PMC7739710.
  • Millet GP, Faiss R, Brocherie F, Girard O. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013 Dec;47 Suppl 1(Suppl 1):i6-7. doi: 10.1136/bjsports-2013-092793. PMID: 24282210; PMCID: PMC3903151.
  • Płoszczyca K, Langfort J, Czuba M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front Physiol. 2018 Apr 11;9:375. doi: 10.3389/fphys.2018.00375. PMID: 29695978; PMCID: PMC5904371.

HIPOKSJA W PROFILAKTYCE I WSPOMAGANIU LECZENIA OTYŁOŚCI

 

  • Lizamore C. A., Hamlin M. J., 2017. The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. High Alt. Med. Biol. 18, 305-321.
  • Park H.Y., Lim K., 2017. The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. Int. J. Sports Sci. 1, 1-5.
  • Park H.Y., Kim J., Park M.Y., Chung, N., Hwang H., Nam S.S. 2018. Exposure and exercise training in hypoxic conditions as a new obesity therapeutic modality: a mini review. J. Obes. Metab. Syndr. 27, 93-101.
  • Kayser B., Verges S., 2013. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes. Rev. 14, 579-592.
  • Millet G. P., Debevec T., Brocherie F., Malatesta D., Girard O., 2016. Therapeutic use of exercising in hypoxia: promises and limitations. Front. Physiol. 7, doi:10.3389/fphys.2016.00224.

 

HIPOKSJA W PROFILAKTYCE I WSPOMAGANIU LECZENIA CUKRZYCY TYPU II

  • Wang Y, Wen L, Zhou S, Zhang Y, Wang XH, He YY, Davie A, Broadbent S. 2018. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One.10;13(9):e0203551. doi:10.1371/journal.pone.0203551.
  • O’Donnell C.P. 2007. Metabolic Consequences Of Intermittent Hypoxia. In: Roach R.C., Wagner P.D., Hackett P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_4
  • Serebrovska TV, Portnychenko AG, Drevytska TI, Portnichenko VI, Xi L, Egorov E, Gavalko AV, Naskalova S, Chizhova V, Shatylo VB. 2017. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood). 2017 Sep;242(15):1542-1552. doi: 10.1177/1535370217723578.
  • Fuller NR, Courtney R, 2016. A case of remission from pre-diabetes following intermittent hypoxic training, Obesity Research & Clinical Practice 10(4), 487-491. https://doi.org/10.1016/j.orcp.2016.05.008.
  • Kim SW, Jung WS, Chung S, Park HY. 2021. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J Diabetes 2021; 12(4): 331-343. DOI: 10.4239/wjd.v12.i4.331

HIPOKSJA W PROFILAKTYCE I WSPOMAGANIU LECZENIA CHORÓB UKŁADU KRĄŻENIA

  • Serebrovskaya T. V., Manukhina E. B., Smith M. L., Downey H. F., Mallet R. T., 2008. Intermittent hypoxia: cause of ortherapy for systemic hypertension? Exp. Biol. Med. 233, 627-650.
  • Kolář F., Oštádal B., 2004. Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol. Res. 53, 3-13.
  • Wang J. S., Chen L. Y., Fu L. L., Chen M. L., Wong M. K., 2007. Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur. J. Appl. Physiol. 100, 127-135.
  • Nishiwaki M., Kawakami R., Saito K., Tamaki H., Takekura H., Ogita F., 2011. Vascular adaptations to hypobaric hypoxic training in postmenopausal women. J. Physiol. Sci. 61, 83-91.
  • Park H.Y., Lim K., 2017. The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. Int. J. Sports Sci. 1, 1-5.
  • Ezzati M., Horwitz M. E., Thomas D. S., Friedman A. B., Roach R., Clark T., 2011. Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. J. Epidemiol. Comm. Health 66, doi: 10.1136/jech.2010.112938.
  • Zembron-Lacny A., Tylutka A., Wacka E., Wawrzyniak-Gramacka E., Hiczkiewicz D., Kasperska A., Czuba M. 2020. Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BioMed Res. Inter. Article ID 6479630, https://doi.org/10.1155/2020/6479630.
  • Wiśniewska A, Płoszczyca K, Czuba M. 2020. Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. J. Sports Med. Phys. Fitness 60. doi: 10.23736/S0022-4707.20.10404-3

HIPOKSJA W POPRAWIE JAKOŚCI ŻYCIA OSÓB STARSZYCH

  • Nishimura A., Sugita M., Kato K., Fukuda A., Sudo A., Uchida A., 2010. Hypoxia increases muscle hypertrophy induced by resistance training. Int. J. Sports Physiol. Perform. 5, 497-508.
  • Chycki J., Czuba M., Gołaś A., Zając A., Fidos-Czuba O., Młynarz A. Smółka W., 2016. Neuroendocrine responses and body composition changes following resistance training under normobaric hypoxia. J. Hum. Kinet. 53, 91-98.
  • Guner I., Uzun D. D., Yaman M. O. Genc H., Gelisgen R., Korkmaz G. G., Hallac M., Yelmen N., Sahin G., Karter Y., Simsek G., 2013. The effect of chronic long-term intermittent hypobaric hypoxia on bone mineral density in rats: role of nitric oxide. Biol. Trace Elem. Res. 154, 262-267.
  • Martinez-Guardado I., Ramos-Campo D. J., Olcina G. J., Rubio-Arias J. A., Chung L. H., Marin-Cascales E., Alcaraz P. E., Timón R., 2019. Effects of high-intensity resistance circuit-based training in hypoxia on body composition and strength performance. Eur. J. Sport Sci. 19, 1-11.
  • Schega L., Peter B., Brigadski T., Leßmann V., Isermann B., Hamacher D., Törpel A., 2016. Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. J. Sci. Med. Sport 19, 941-945.
  • Belikova M. V., Kolesnikova E. E., Serebrovskaya T. V., 2012. Intermittent hypoxia and experimental Parkinson’s disease. [W:] Intermittent hypoxia and human diseases. Xi L., Serebrovskaya T.V. (red.). Springer, London, 147-153.

HIPOKSJA W WSPOMAGANIU LECZENIA SCHORZEŃ UKŁADU ODDECHOWEGO

  • Serebrovskaia T. V., Mankovskaia I. N., Lysenko G. I., Swanson R., Belinskaia I. V., Oberenko O. A., Daniliuk S. V., 1998. A method for intermittent hypoxic exposures in the combined treatment of bronchial asthma patients. Lik. Sprava 6, 104-108.
  • Harrison C. C., Fleming J. M., Giles L. C., 2002. Does interval hypoxic training affect the lung function of asthmatic athletes. New Zeal. J. Sport. Med. 30, 64-67.
  • Vogtel M, Michels A. 2010. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol.10(3):206-13. doi: 10.1097/ACI.0b013e32833903a6. PMID: 20386436.
  • Burtscher M. 2012. Effects of Intermittent Hypoxic Training on Exercise Tolerance in Patients with Chronic Obstructive Pulmonary Disease. W: Xi L., Serebrovskaya T. (eds) Intermittent Hypoxia and Human Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-2906-6_10

HIPOKSJA W ZABURZENIACH NEUROLOGICZNYCH

  • Gonzalez-Rothi E. J., Lee K. Z., Dale E. A., Reier P. J., Mitchell G. S., Fuller D. D., 2015. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 119, 1455-1465.
  • Manukhina E. B., Downey H. F., Shi X., Mallet R. T., 2016. Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp. Biol. Med. 241, 1351-1363.
  • Belikova M. V., Kolesnikova E. E., Serebrovskaya T. V., 2012. Intermittent hypoxia and experimental Parkinson’s disease. [W:] Intermittent hypoxia and human diseases. Xi L., Serebrovskaya T.V. (red.). Springer, London, 147-153
  • Manukhina E. B., Goryacheva A. V., Pshennikova M. G., Malyshev I. Y., Mallet R. T., Downey H. F., 2012. Protective effects of adaptation to hypoxia in experimental Alzheimer’s disease. [W:] Intermittent hypoxia and human diseases. Xi L., Serebrovskaya T.V. (red.). Springer, London, 155-171.
  • Gonzalez-Rothi E. J., Lee K. Z., Dale E. A., Reier P. J., Mitchell G. S., Fuller D. D., 2015. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 119, 1455-1465.
  • Piotrowicz, Z.; Chalimoniuk, M.; Płoszczyca, K.; Czuba, M.; Langfort, J. 2020 Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. Int. J. Mol. Sci. 21, 5569.